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ABSTRACT 

The accumulation of partial products is used to multiply binary bits. Full adders and half adders 

are commonly used for this. Various algorithms are utilized, including the Booth method, 

Ripple Carry, and Carry Save. The multiplier's performance in terms of latency, power, and 

area is determined by the number of stages used to sum the partial products. A higher order 

compressor-based area efficient 8x8 multiplier is proposed in this paper. To collect fragmentary 

products, we used the Wallace Tree structure. Carry save form is used in the structure. The 

carries generated in the adders are then passed on to the next stage, and so on, until the final 

stage. The final product is created using ripple carry form in the final stage. The Wallace Tree 

was chosen because it has a shorter critical path, resulting in reduced delay. Here we used two 

different methods to perform 8-bit multiplication and analysed both of them regarding area, 

power and some other parameters. 
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CHAPTER 1 

INTRODUCTION 

Multiplication is a fundamental function in arithmetic operations, and operations like multiply and 

Accumulate (MAC) and inner product are among the most commonly used Computation Intensive 

Arithmetic Functions (CIAF) in DSP applications like convolution, Fast Fourier Transform (FFT), 

filtering, and in microprocessors' arithmetic and logic units. Because multiplication takes up the majority 

of the execution time in most DSP algorithms, a high-speed multiplier is required. Multiplication time is 

still the most important component in determining a DSP chip's instruction cycle time. As the number of 

computer and signal processing applications grows, so does the demand for high-speed processing. In 

many real-time signal and image processing applications, higher throughput arithmetic operations are 

required to attain the desired performance. Multiplication is one of the most important mathematical 

operations in such applications, and the creation of fast multiplier circuits has piqued attention for 

decades. For many applications, reducing the time delay and power consumption are critical criteria. 

Different multiplier architectures are presented in this paper. 

 

1.1 PROJECT OBJECTIVE: 

The main objective of this project is to design and implementation of area efficient multiplier with higher 

order compressors using Xilinx Vivado Software. The Synthesis and Implementation is done for different 

types of compressor adders using Xilinx Vivado. The performance is compared in terms of power, area 

and delay. 

1.2 PROJECT OUTLINE: 

• Project report is presented over the 6 remaining chapters. 

• Chapter 2 Introduction to multipliers. 

• Chapter 3 Introduction to compressor adders 

• Chapter 4 Overview of fpga and eda software 

• Chapter 5 Methodology 

• Chapter 6 Results and conclusions 
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CHAPTER 2 

INTRODUCTION TO MULTIPLIERS 

 

2.1 MULTIPLIERS 

Multipliers play an important role in today’s digital signal processing and various other 

applications. With advances in technology, many researchers have tried and are trying to design 

multipliers which offer either of the following design targets–high speed, low power 

consumption, regularity of layout and hence less area or even combination of them in one 

multiplier thus making them suitable for various high speed, low power and compact VLSI 

implementation. 

The common multiplication method is “add and shift” algorithm. In parallel multipliers number 

of partial products to be added is the main parameter that determines the performance of the 

multiplier. To reduce the number of partial products to be added, Modified Booth algorithm is 

one of the most popular algorithms. 

To achieve speed improvements Wallace Tree algorithm can be used to reduce the number of 

sequential adding stages. Further by combining both Modified Booth algorithm and Wallace 

Tree technique we can see advantage of both algorithms in one multiplier. 

However, with increasing parallelism, the number of shifts between the partial products and 

intermediate sums to be added will increase which may result in reduced speed, increase in 

silicon area due to irregularity of structure and also increased power consumption due to increase 

in interconnect resulting from complex routing. 

 On the other hand, “serial-parallel” multipliers compromise speed to achieve better 

performance for area and power consumption. The selection of a parallel or serial multiplier 

actually depends on the nature of application. In this lecture we introduce the multiplication 

algorithms and architecture and compare them in terms of speed, area, power and combination 

of these metrics. 
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  2.2 TYPES OF MULTIPLIERS 

 

Serial Multiplier: Where area and power is of utmost importance and delay can be tolerated 

the serial multiplier is used. This circuit uses one adder to add the m * n partial products. 

Serial/Parallel Multiplier: One operand is fed to the circuit in parallel while the other is serial. 

N partial products are formed each cycle. On successive cycles, each cycle does the addition 

of one column of the multiplication table of M*N PPs. The final results are stored in the output 

register after N+M cycles 

 

Fig 2.1 Serial /parallel Multiplier 

 

Shift and Add Multiplier: Depending on the value of multiplier LSB bit, a value of the 

multiplicand is added and accumulated. At each clock cycle the multiplier is shifted one bit to 

the right and its value is tested. If it is a 0, then only a shift operation is performed. If the value 

is a 1, then the multiplicand is added to the accumulator and is shifted by one bit to the right. 

After all the multiplier bits have been tested the product is in the accumulator. The accumulator 

is 2N (M+N) in size and initially the N, LSBs contains the Multiplier. The delay is N cycles 

maximum. This circuit has several advantages in asynchronous circuits 
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Fig 2.2 Shift and add multiplier 

 

Array Multipliers: Array multiplier is well known due to its regular structure. Multiplier circuit is based 

on add and shift algorithm. Each partial product is generated by the multiplication of the multiplicand 

with one multiplier bit. The partial product are shifted according to their bit orders and then added. The 

addition can be performed with normal carry propagate adder. N-1 adders are required where N is the 

multiplier length. 

 

 

Fig 2.3 Array multiplier 
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Booth Multipliers: It is a powerful algorithm for signed-number multiplication, which treats both 

positive and negative numbers uniformly. For the standard add-shift operation, each multiplier bit 

generates one multiple of the multiplicand to be added to the partial product. If the multiplier is very 

large, then a large number of multiplicands have to be added. In this case the delay of multiplier is 

determined mainly by the number of additions to be performed. If there is a way to reduce the number 

of the additions, the performance will get better. Booth algorithm is a method that will reduce the number 

of multiplicand multiples. For a given range of numbers to be represented, a higher representation radix 

leads to fewer digits. Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-

digit radix-8 number, and so on, it can deal with more than one bit of the multiplier in each cycle by using 

high radix multiplication. 

 

 

 

Fig 2.4 Booth Multiplier
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Sequential multiplier: If we want to multiply two binary number (multiplicand X has n bits 

and multiplier Y has m bits) using single n bit adder, we can build a sequential circuit that 

processes a single partial product at a time and then cycle the circuit m times. This type of circuit 

is called sequential multiplier. Sequential multipliers are attractive for their low area 

requirement. In a sequential multiplier, the multiplication process is divided into some 

sequential steps. In each step some partial products will be generated, added to an accumulated 

partial sum and partial sum will be shifted to align the accumulated sum with partial product of 

next steps. Therefore, each step of a sequential multiplication consists of three different 

operations which are generating partial products, adding the generated partial products to the 

accumulated partial sum and shifting the partial sum. 

 

 

Fig 2.5 Sequential multiplier 

Wallace tree Multiplier: A Wallace tree is a efficient hardware implementation of a digital 

circuit that multiplies two integers. It was devised by the Australian computer scientist Chris 

Wallace in 1964. 

The Wallace tree has three steps: 

1. Multiply (that is – AND) each bit of one of the arguments, by each bit of the other, 

yielding n ^2 results. Depending on position of the multiplied bits, the wires carry 

different weights, for example wire of bit carrying result of is 128 (see explanation of 

weights below). 

2. Reduce the number of partial products to two by layers of full and half adders. 

3. Group the wires in two numbers, and add them with a conventional adder 

The second step works as follows. As long as there are three or more wires with the same 

weight add a following layer: - 

 

• Take any three wires with the same weights and input them into a Full adder. The result 
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will be an output wire of the same weight and an output wire with a higher weight for each 

three input wires. 

• If there are two wires of the same weight left, input them into a Half adder 

• If there is just one wire left, connect it to the next layer. 

The benefit of the Wallace tree is that there are only reduction layers, and each layer has 

O (1) propagation delay. As making the partial products is O (1) and the final addition is O 

(log n), the multiplication is only, not much slower than addition (however, much more 

expensive in the gate count). Naively adding partial products with regular adders would require 

O (log2 n) time. 

 

 

 

 

Fig 2.6 Wallace tree multiplier



8 
 

CHAPTER 3 

INTRODUCTION TO COMPRESSOR ADDERS 

 

3.1 COMPRESSOR ADDERS 

Compressor adders are basic circuits which add bits more than four at a time to give better delay results 

over the combinational circuits of half and full adders. The symbolic representation of compressor 

architecture is N − r where ‘N’ represents the number of the bits that are fed and ‘r’ represents the total 

count of the 1s present in N bits. It actually reduces the gate counts and delay in comparison to adder 

circuits and that is why named as compressor. A large part of research has been done in improving the 

circuits of lower compressors. Along with this, higher compressors are also implemented to add higher 

number of bits.  The main compressor architectures which are used widely are 4-2,7-2, 5-3, 10-4, 15-4 

and also 4-3,6-3,7-3,8-4. 

3.2 TYPES OF COMPRESSOR ADDERS 

4-2 COMPRESSOR ADDER: A 4-2 compressor compresses four inputs plus one carry bit ‘Cin' from 

the previous column into two outputs ‘Sum' and ‘Carry' plus one intermediate carry bit ‘Cout' that is 

provided as Cin to the next column, as the name implies.  

The 4-2 compressor's input and output relationship can be expressed mathematically as 

Cin+X4+X3+X2+X1 = Sum+2 (Carry+Cout). As shown in Fig., implementing a 4-2 compressor using 

basic cascading of full adders introduces a critical path delay of four XOR gates. As shown in Fig. 2, 

logical optimization reduces the critical path delay to three XOR gates, and this 4-2 compressor is 

considered a traditional model.  

The traditional 4-2 compressor's Boolean equations are as follows: Sum = Cin X4 X3 X2 X1 Carry = 

(X4 X3 X2 X1) Cin + (X4 X3 X2 X1) X4 Cout = (X2 X1) X3 + (X2 X1) X1 
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Fig 3.2.1 circuit diagram of 4-2 compressor adder 

5-3 COMPRESSOR ADDER: A 5-3 compressor adder is a logical circuit in which maximum five bits 

can be added at the same time and three bits resultant of maximum value 101 is obtained. The circuit 

uses three 4:1 multiplexer. This multiplexer allows only one output to be high at a time and this property 

makes the multiplier fast and low power consuming circuit [13–15]. The circuit is reorganized in such 

a way that only 3 XOR operations are used instead of 5 XOR operations (in case of conventional 5-3 

compressor) and other two inputs (X3 and X4) acts as a control signal. The conventional and the 

modified 5-3 compressor adder circuit are shown in 

 

Fig 3.2.3(a) circuit diagram of 5-3 compressor adder using gates 



10 
 

 

Fig 3.2.3(b) modified circuit diagram of 5-3 compressor adder 

 

6-3 COMPRESSOR ADDER: 

A  combinational  logic  circuit  of  6:3  compressor  accepts six  inputs  and produces  three outputs. 

The six input bits are summed up to produce the three  bit  output. In this three full adders and one half 

adder is used. The six input bits are given to two full adders which results in four outputs. These four 

output bits are fed to full adder and half adder as shown in the architecture and produces three outputs 

which are the final output bits of the result. The maximum output for a 6:3 compressor is 110. 

 

Fig 3.2.4 circuit diagram of 6-3 compressor adder 
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7-3 COMPRESSOR ADDER: 

Combinational logic circuit of 7:3 compressor accepts seven inputs and produces three outputs. The 

seven input bits are summed up to produce the three bit cc output. In this, four full adders are used. The 

seven input bits are given to three full adders as shown in the figure. The first six bits are given to two 

full adders and the last bit is fed to another full adder. Finally the output bits are fetched as shown. 

 

Fig 3.2.5 circuit diagram of 7-3 compressor adder 
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CHAPTER 4 

OVERVIEW OF FPGA AND EDA SOFTWARE 

4.1 INTRODUCTION 

 Developing a large FPGA –based system is an involved process that consists of many complex 

transformations and optimization algorithms. Software tools are needed to automate some of the tasks. 

We use Nexys4 Board which is a complete, ready-to- use digital circuit development platform based on 

the latest Artix-7 Field Programmable Gate Array (FPGA) (XC7A100T-ICSG324C) from Xilinx for 

synthesis and implementation, and use the Vivado Design Suite for simulation.  

 A Field Programmable Gate Array (FPGA) is a logic device that contains a two- dimensional 

add shift of generic logic cells and programmable switches. A logic cell can be programmed to perform 

a simple function, and a programmable   switch can be customized to provide interconnection among 

the logic cells.  

  A custom design can be implemented by specifying the function of each logic cell and 

selectively setting the connection of each programmable switch. Once the design and synthesis are 

completed, we can use a simple adapter cable to download the desired logic cell and switch 

configuration to the FPGA device and obtain the custom circuit. Since this process can be done “in the 

field” rather than “in fabrication facility (fab),” the device is known as field programmable. 

 

4.2 OVERVIEW OF DIGILENT BASYS3 BOARD 

The Basys-3 board is a complete, ready-to-use digital circuit development platform based on the 

latest Artix-7 Field Programmable Gate Array (FPGA) from Xilinx®. With its high-capacity FPGA 

(Xilinx part number XC7A35T- 1CPG236C), low overall cost, and collection of USB, VGA, and 

other ports, the Basys-3 can host designs ranging from introductory combinational circuits to 

complex sequential circuits like embedded processors and controllers. It includes enough switches, 

LEDs, and other I/O devices to allow a large number of designs to be completed without the need 

for any additional hardware, and enough uncommitted FPGA I/O pins to allow designs to be 

expanded using Digilent Pmods or other custom boards and circuits. 
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4.2.1 Features of Basys-3 

 
• 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops) 

• 1,800 Kbits of fast block RAM 

• Five clock management tiles, each with a phase-locked  loop(PLL) 

• 90 DSP slices 

• Internal clock speeds exceeding 450MHz 

• On-chip analog-to-digital converter(XADC) 

• 16 user switches 

• 16 user LEDs 

• 5 user push buttons 

• 4-digit7-segmentdisplay 

• Three Pmod ports 

• Pmod for XADC signals 

• 12-bit VGA output 

• USB-UART Bridge 

• Serial Flash 

• Digilent USB-JTAG port for FPGA programming and communication 

• USB HID Host for mice, keyboards and memory sticks 
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Fig1. Basys-3 FPGA board with callouts. 

 

Table 1. Basys-3 components 

Callout Component Description Callout Component Description 

1 Power good LED 9 FPGA configuration reset button 

2 Pmod port(s) 10 Programming mode jumper 

3 Analog signal Pmod port (XADC) 11 USB host connector 

4 Four digit 7-segment display 12 VGA connector 

5 Slide switches (16) 13 Shared UART/ JTAG USB port 

6 LEDs (16) 14 External power connector 

7 Pushbuttons (5) 15 Power Switch 

8 FPGA programming done LED 16 Power Select Jumper 
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4.2.2. Power Supplies 

The Basys-3 board can receive power from the Digilent USB-JTAG port (J4) or from a 5V external 

power supply. Jumper JP3 (near the power switch) determines which source is used. 

All Basys-3 power supplies can be turned on and off by a single logic-level power switch (SW16). A 

power-good LED (LD20), driven by the "power good" output of the LTC3633 supply, indicates that the 

supplies are turned on and operating normally. An overview of the Basys-3 power circuit is shown in 

Fig. 2. 

 
Fig2. Basys-3 power circuit. 

 

The USB port can deliver enough power for the vast majority of designs. A few demanding applications, 

including any that drive multiple peripheral boards, might require more power than the USB port can 

provide. Also, some applications may need to run without being connected to a PC's USB port. In these 

instances an external power supply or battery pack can be used. 

An external power supply can be used by plugging into the external power header (J6) and setting 

jumper JP2 to "EXT". The supply must deliver 4.5VDC to 5.5VDC and at least 1A of current (i.e., at 

least 5W of power). Many suitable supplies can be purchased through Digi-Key or other catalog 

vendors. 

An external battery pack can be used by connecting the battery's positive terminal to the "EXT" pin of 

J6 and the negative terminal to the "GND" pin of J6. The power provided to USB devices that are 

connected to Host connector J2 is not regulated. Therefore, it is necessary to limit the maximum voltage 
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of an external battery pack to 5.5V DC. The minimum voltage of the battery pack depends on the 

application; if the USB Host function (J2) is used, at least 4.6V needs to be provided. In other cases, the 

minimum voltage is 3.6V. 

Voltage regulator circuits from Linear Technology create the required 3.3V, 1.8V, and 1.0V supplies 

from the main power input. Table 2 provides additional information (typical currents depend strongly on 

FPGA configuration and the values provided are typical of medium size/speed designs). 

 

Table 2. Basys-3 power supplies. 

 

Supply Circuits Device Current (max/typical) 

3.3V FPGA I/O, USB ports, 

Clocks, 

Flash, PMODs 

IC10: LTC3633 2A/0.1 to 1.5A 

1.0V FPGA Core IC10: LTC3633 2A/ 0.2 to 1.3A 

1.8V FPGA Auxiliary and Ram IC11: LTC3621 300mA/ 0.05 to 0.15A 

 

 

4.2.3 FPGA Configuration  

 
After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform any 

functions. You can configure the FPGA in one of three ways: 

A PC can use the Digilent USB-JTAG circuitry (portJ4, labeled "PROG") to program the FPGA any 

time the power is on. 

A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using the SPI 

port. 

A programming file can be transferred from a USB memory stick attached to the USB HID port. 

Figure 3 shows the different options available for configuring the FPGA. An on-board "mode" jumper 

(JP1) selects between the programming modes. 
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Fig3. Basys-3 configuration options 

 

The FPGA configuration data is stored in files called bit streams that have the .bit file extension. The 

Vivado software from Xilinx can create bit streams from VHDL, Verilog®, or schematic-based source 

files. 

Bit stream are stored in SRAM-based memory cells within the FPGA. This data defines the FPGA's 

logic functions and circuit connections, and it remains valid until it is erased by removing board power, 

by pressing the reset button attached to the PROG input, or by writing a new configuration file using 

the JTAG port. 

An Artix-7 35T bit stream is typically 17,536,096 bits and can take a long time to transfer. The time it 

takes to program the Basys-3 can be decreased by compressing the bit stream before programming, and 

then allowing the FPGA to decompress the Bit stream itself during configuration. Depending on design 

complexity, compression ratios of 10x can be achieved. Bit stream compression can be enabled within 

the Xilinx Tools (Vivado) to occur during generation. For instructions on how to do this, consult the 

Xilinx documentation for the toolset being used. 

After being successfully programmed, the FPGA will cause the "DONE" LED to illuminate. Pressing 

the "PROG" button at any time will reset the configuration memory in the FPGA. After being reset, the 

FPGA will immediately attempt to reprogram itself from whatever method has been selected by the 

programming mode jumper. 
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The following sections provide greater detail about programming the Basys-3 using the different 

methods available. 

4.2.3.1 JTAG Programming 

The Xilinx Tools typically communicate with FPGAs using the Test Access Port and Boundary-Scan 

Architecture, commonly referred to as JTAG. During JTAG programming, a .bit file is transferred from 

the PC to the FPGA using the onboard Digilent USB-JTAG circuitry (port J4) or an external JTAG 

programmer, such as the Digilent JTAG-HS2 attached to port J5 (located below port JA). You can 

perform JTAG programming any time after the Basys-3 has been powered on regardless of what the 

mode jumper (JP1) is set to. If the FPGA is already configured, then the existing configuration is 

overwritten with the Bit stream being transmitted over JTAG. Setting the mode jumper to the JTAG 

setting (seen in Fig. 3) is useful to prevent the FPGA from being configured from any other Bit stream 

source until a JTAG programming occurs. 

Programming the Basys-3 with an uncompressed Bit stream using the on-board USB_JTAG circuitry 

usually takes around five seconds. JTAG programming can be done using the hardware server in Vivado. 

The demonstration project available at digilentinc.com provides an in-depth tutorial on how to program 

your board. 

4.2.3.2 JTAG Programming 

When programming a nonvolatile flash device, a Bit stream file is transferred to the flash in a two-step 

process. First, the FPGA is programmed with a circuit that can program flash devices, and then data is 

transferred to the flash device via the FPGA circuit (this complexity is hidden from the user by the Xilinx 

Tools). After the flash device has been programmed, it can automatically configure the FPGA at a 

subsequent power-on or reset event as determined by the mode jumper setting (see Fig. 3). Programming 

files stored in the flash device will remain until they are overwritten, regardless of power-cycle events. 

Programming the flash can take as long as one or two minutes, which is mostly due to the lengthy erase 

process inherent to the memory technology. Once written, however, FPGA configuration can be very 

fast – less than a second. Bit stream compression, SPI bus width, and configuration rate are factors 

controlled by the Xilinx Tools that can affect configuration speed. 

Quad-SPI programming can be performed using Vivado. 
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4.2.3.3 USB   Host   Programming 

You can program the FPGA from a pen drive attached to the USB-HID port (J2) by doing the following: 

1. Format the storage device (Pen drive) with a FAT32 file system. 

2. Place a single bit configuration file in the root directory of the storage device. 

3. Attach the storage device to the Basys-3. 

4. Set the JP1 Programming Mode jumper on the Basys-3 to "USB". 

5. Push the PROG button or power-cycle the Basys-3. 

The FPGA will automatically be configured with the .bit file on the selected storage device. Any .bit 

files that are not built for the proper Artix-7 device will be rejected by the FPGA. 

 

The Auxiliary Function Status, or "BUSY" LED (LD16), gives visual feedback on the state of the 

configuration process when the FPGA is not yet programmed: 

• When steadily lit, the auxiliary microcontroller is either booting up or currently reading the 

configuration medium (pen drive) and downloading a Bit stream to the FPGA. 

• A slow pulse means the microcontroller is waiting for a configuration medium to be plugged in. 

• In case of an error during configuration, the LED will blink rapidly. 

When the FPGA has been successfully configured, the behavior of the LED is application-specific. For 

example, if a USB keyboard is plugged in, a rapid blink will signal the receipt of an HID input report 

from the keyboard.
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4.2.4. Memory 

The Basys-3 board contains a 32Mbit non-volatile serial Flash device, which is attached to the Artix-7 

FPGA using a dedicated quad-mode (x4) SPI bus. The connections and pin assignments between the 

FPGA and the serial flash device are shown in Fig. 4. 

FPGA configuration files can be written to the Quad SPI Flash (Spansion part number S25FL032), and 

mode settings are available to cause the FPGA to automatically read a configuration from this device at 

power on. An Artix-7 35T configuration file requires just over two Mbytes of memory, leaving 

approximately 48% of the flash device available for user data. 

NOTE: Refer to the manufacturer's data sheets and the reference designs posted on Digilent's website 

for more information about the memory devices. 

 

Fig4. Basys-3 external memory 

 

4.2.5. Oscillators/Clocks 

The Basys-3 board includes a single 100 MHz oscillator connected to pin W5 (W5 is a MRCC input on 

bank 34). The input clock can drive MMCMs or PLLs to generate clocks of various frequencies and with 

known phase relationships that may be needed throughout a design. Some rules restrict which MMCMs 

and PLLs may be driven by the 100 MHz input clock. For a full description of these rules and of the 

capabilities of the Artix-7 clocking resources, refer to the "7 Series FPGAs Clocking Resources User 

Guide" available from Xilinx. 

Xilinx offers the LogiCORE™ Clocking Wizard IP to help users generate the different clocks required 

for a specific design. This wizard properly instantiates the needed MMCMs and PLLs based on the 

desired frequencies and phase relationships specified by the user. The wizard will then output an easy to 

use wrapper component around these clocking resources that can be inserted into the user's design. The 

Clocking Wizard can be accessed from within IP Catalog, which can be found under the Project Manager 

section of the Flow Navigator in Vivado. 
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4.2.6. USB-UART Bridge (Serial Port) 

The Basys-3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that allows 

you to use PC applications to communicate with the board using standard Windows COM port 

commands. Free USB-COM port drivers, available from www.ftdichip.com under the "Virtual Com 

Port" or VCP heading, convert USB packets to UART/serial port data. Serial port data is exchanged 

with the FPGA using a two-wire serial port (TXD/RXD). After the drivers are installed, I/O commands 

can be used from the PC directed to the COM port to produce serial data traffic on the B18 and A18 

FPGA pins. 

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the transmit LED 

(LD18) and the receive LED (LD17). Signal names that imply direction are from the point-of-view of 

the DTE (Data Terminal Equipment), in this case the PC. 

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART 

and USB-JTAG functions behave entirely independent of one another. Programmers interested in using 

the UART functionality of the FT2232 within their design do not need to worry about the JTAG circuitry 

interfering with the UART data transfers, and vice-versa. The combination of these two features into a 

single device allows the Basys-3 to be programmed, communicated with via UART, and powered from 

a computer attached with a single Micro USB cable. The connections between the FT2232HQ and the 

Artix-7 are shown in Fig. 6. 

 
 

Fig6. Basys-3 FT2232HQ Connection 

 

4.2.7.USB HID Host 

The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Basys-3 with USB HID 

host capability. After power-up, the microcontroller is in configuration mode, either downloading a Bit 

stream to the FPGA or waiting for it to be programmed from other sources. Once the FPGA is 

programmed, the microcontroller switches to application mode, which in this case is USB HID Host 

mode. Firmware in the microcontroller can drive a mouse or a keyboard attached to the type A USB 

connector at J2 labeled "USB." Hub support is not currently available, so only a single mouse or a single 

keyboard can be used. The PIC24 drives several signals into the FPGA – two are used to implement a 

http://www.ftdichip.com/
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standard PS/2 interface for communication with a mouse or keyboard, and the others are connected to 

the FPGA's two-wire serial programming port, so the FPGA can be programmed from a file stored on a 

USB pen drive. 

 

Fig7. Basys-3 PIC24 connections. 

 

4.2.7.1 HID CONTROLLER 

The Auxiliary Function microcontroller hides the USB HID protocol from the FPGA and emulates 

an old-style PS/2 bus. The microcontroller behaves just like a PS/2 keyboard or mouse would. This 

means new designs can re-use existing PS/2 IP cores. Mice and keyboards that use the PS/2 protocol 

use a two-wire serial bus (clock and data) to communicate with a host. On the Basys-3, the 

microcontroller emulates a PS/2 device while the FPGA plays the role of the host. Both the mouse 

and the keyboard use 11-bit words that include a start bit, data byte (LSB first), odd parity, and stop 

bit, but the data packets are organized differently, and the keyboard interface allows bi- directional 

data transfers (so the host device can illuminate state LEDs on the keyboard). Bus timings are shown 

in Fig. 8. 

 

 

Fig8. PS/2 device-to host timing diagram. 
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The clock and data signals are only driven when data transfers occur; otherwise they are held in the 

idle state at logic '1.' This requires that when the PS/2 signals are used in a design, internal pull-ups 

must be enabled in the FPGA on the data and clock pins. The clock signal is normally driven by the 

device, but may be held low by the host in special cases. The timings define signal requirements for 

mouse-to-host communications and bi-directional keyboard communications. A PS/2 interface 

circuit can be implemented in the FPGA to create a keyboard or mouse interface. 

When a keyboard or mouse is connected to the Basys-3, a "self-test passed" command (0xAA) is 

sent to the host. After this, commands may be issued to the device. Since both the keyboard and the 

mouse use the same PS/2 port, one can tell the type of device connected using the device ID. This 

ID can be read by issuing a Read ID command (0xF2). Also, a mouse sends its ID (0x00) right after 

the "self-test passed" command, which distinguishes it from a keyboard. 

4.2.7.2 Keyboard 

The keyboard uses open-collector drivers so the keyboard, or an attached host device, can drive the 

two-wire bus (if the host device will not send data to the keyboard, then the host can use input-only 

ports). 

PS/2-style keyboards use scan codes to communicate key press data. Each key is assigned a code that 

is sent whenever the key is pressed. If the key is held down, the scan code will be sent repeatedly 

about once every 100ms. When a key is released, an F0 key-up code is sent, followed by the scan 

code of the released key. If a key can be shifted to produce a new character (like a capital letter), then 

a shift character is sent in addition to the scan code and the host must determine which ASCII 

character to use. Some keys, called extended keys, send an E0 ahead of the scan code (and they may 

send more than one scan code). When an extended key is released, an E0 F0 key-up code is sent, 

followed by the scan code. Scan codes for most keys are shown in Fig. 9. 

 
 

Fig 9. Keyboard scan codes. 
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A host device can also send data to the keyboard. Table 3 shows a list of some common commands 

a host might send.  

The keyboard can send data to the host only when both the data and clock lines are high (or idle). 

Because the host is the bus master, the keyboard must check to see whether the host is sending data 

before driving the bus. To facilitate this, the clock line is used as a "clear to send" signal. If the host 

drives the clock line low, the keyboard must not send any data until the clock is released. The 

keyboard sends data to the host in 11-bit words that contain a '0' start bit, followed by 8-bits of scan 

code (LSB first), followed by an odd parity bit, and terminated with a '1' stop bit. The keyboard 

generates 11 clock transitions (at 20 to 30 KHz) when the data is sent, and data is valid on the falling 

edge of the clock. 

Table 3. Keyboard commands. 

Command Action 

 

ED 

Set Num Lock, Caps Lock, and Scroll Lock LEDs. Keyboard returns FA after 
receiving ED, then 

host sends a byte to set LED status: bit 0 sets Scroll Lock, bit 1 sets Num Lock, 

and bit 2 sets Caps lock. Bits 3 to 7 are ignored. 

EE Echo (test). Keyboard returns EE after receiving EE. 

F3 
Set scan code repeat rate. Keyboard returns F3 on receiving FA, then host sends 
second byte 
to set the repeat rate. 

FE Resend. FE directs keyboard to re-send most recent scan code. 

FF Reset. Resets the keyboard. 

 

 

4.2.7.3 MOUSE 

Once entered in stream mode and data reporting has been enabled, the mouse outputs a clock and 

data signal when it is moved. Otherwise, these signals remain at logic '1.' Each time the mouse is 

moved, three 11-bit words are sent from the mouse to the host device, as shown in Fig. 10. Each of 

the 11-bit words contains a '0' start bit, followed by 8 bits of data (LSB first), followed by an odd 

parity bit, and terminated with a '1' stop bit. Thus, each data transmission contains 33 bits, where 

bits 0, 11, and 22 are '0' start bits, and bits 11, 21, and 33 are '1' stop bits. The three 8-bit data fields 

contain movement data as shown in the Fig. 10. Data is valid at the falling edge of the clock, and 

the clock period is 20 to 30 KHz. 

The mouse assumes a relative coordinate system wherein moving the mouse to the right generates a 

positive number in the X field, and moving to the left generates a negative number. Likewise, moving 

the mouse up generates a positive number in the Y field, and moving down represents a negative 
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number (the XS and YS bits in the status byte are the sign bits – a '1' indicates a negative number). 

The magnitude of the X and Y numbers represent the rate of mouse movement; the larger the 

number, the faster the mouse is moving (the XV and YV bits in the status byte are movement 

overflow indicators – a '1' means overflow has occurred). If the mouse moves continuously, the 33-

bit transmissions are repeated every 50ms or so. The L and R fields in the status byte indicate Left 

and Right button presses (a '1' indicates that the button is being pressed). 

 

Fig 10. Mouse data format. 

 

The microcontroller also supports Microsoft® IntelliMouse®-type extensions for reporting 

back a third axis representing the mouse wheel, as shown in Table 4. 

Table 4. Microsoft Intelli mouse-type extensions, commands, and actions. 

Command Action 

EA 
Set stream mode. The mouse responds with "acknowledge" (0xFA) then resets 
its movement 
counters and enters stream mode. 

 

F4 

Enable data reporting. The mouse responds with "acknowledge" (0xFA) then 
enables data 
reporting and resets its movement counters. This command only affects 

behavior in stream mode. Once issued, mouse movement will automatically 

generate a data packet. 

F5 
Disable data reporting. The mouse responds with "acknowledge" (0xFA) then 
disables data 
reporting and resets its movement counters. 

 

F3 

Set mouse sample rate. The mouse responds with "acknowledge" (0xFA) 

then reads one more byte from the host. This byte is then saved as the new 

sample rate, and a new "acknowledge" 
packet is issued. 

FE Resend. FE directs mouse to re-send last packet. 

FF Reset. The mouse responds with "acknowledge" (0xFA) then enters reset 

mode. 
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4.2.8 VGA PORT 

NOTE: A helpful way to understand the way that VGA signals are transmitted is to understand the 

method of which CRT (Cathode Ray Tubes) function for displaying images. Although the technology 

may seem outdated, it is from this legacy that many of the signal names and timings have originated. 

The Basys-3 board uses 14 FPGA signals to create a VGA port with 4-bits per colour and the two 

standard sync signals (HS – Horizontal Sync, and VS – Vertical Sync). The colour signals use resistor-

divider circuits that work in conjunction with the 75 ohm termination resistance of the VGA display to 

create 16 signal levels each on the red, green, and blue VGA signals. This circuit, shown in Fig. 11, 

produces video colour signals that proceed in equal increments between 0V (fully off) and 0.7V (fully 

on). Using this circuit, 4096 different colours can be displayed, one for each unique 12-bit pattern. A 

video controller circuit must be created in the FPGA to drive the sync and colour signals with the correct 

timing in order to produce a working display system. 

 

Fig 11.VGA port 
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4.2.8.1 VGA SYSTEM TIMING 

VGA signal timings are specified, published, copyrighted, and sold by the VESA® organization 

(www.vesa.org). The following VGA system timing information is provided as an example of how 

a VGA monitor might be driven in 640 by 480 mode. 

NOTE: For more precise information, or for information on other VGA frequencies, refer to 

documentation available at the VESA website. 

CRT-based VGA displays use amplitude-modulated moving electron beams (or cathode rays) to 

display information on a phosphor-coated screen. LCD displays use an array of switches that can 

impose a voltage across a small amount of liquid crystal, thereby changing light permittivity through 

the crystal on a pixel-by-pixel basis. Although the following description is limited to CRT displays, 

LCD displays have evolved to use the same signal timings as CRT displays (so the "signals" 

discussion below pertains to both CRTs and LCDs). Color CRT displays use three electron beams 

(one for red, one for blue, and one for green) to energize the phosphor that coats the inner side of the 

display end of a cathode ray tube (see Fig. 12). 

 

 

Fig 12. Colour CRT display. 

 

Electron beams emanate from "electron guns" which are finely-pointed heated cathodes placed in 

close proximity to a positively charged annular plate called a "grid." The electrostatic force imposed 

by the grid pulls rays of energized electrons from the cathodes, and those rays are fed by the current 

that flows into the cathodes. These particle rays are initially accelerated towards the grid, but they 

soon fall under the influence of the much larger electrostatic force that results from the entire 

http://www.vesa.org/
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phosphor-coated display surface of the CRT being charged to 20kV (or more). The rays are focused 

to a fine beam as they pass through the center of the grids, and then they accelerate to impact on the 

phosphor-coated display surface. The phosphor surface glows brightly at the impact point, and it 

continues to glow for several hundred microseconds after the beam is removed. The larger the 

current fed into the cathode, the brighter the phosphor will glow. 

Between the grid and the display surface, the beam passes through the neck of the CRT where two 

coils of wire produce orthogonal electromagnetic fields. Because cathode rays are composed of 

charged particles (electrons), they can be deflected by these magnetic fields. Current waveforms 

are passed through the coils to produce magnetic fields that interact with the cathode rays and cause 

them to transverse the display surface in a "raster" pattern, horizontally from left to right and 

vertically from top to bottom, as shown in Fig. 13. As the cathode ray moves over the surface of 

the display, the current sent to the electron guns can be increased or decreased to change the 

brightness of the display at the cathode ray impact point. 

Information is only displayed when the beam is moving in the "forward" direction (left to right and 

top to bottom), and not during the time the beam is reset back to the left or top edge of the display. 

Much of the potential display time is therefore lost in "blanking" periods when the beam is reset and 

stabilized to begin a new horizontal or vertical display pass. The size of the beams, the frequency at 

which the beam can be traced across the display, and the frequency at which the electron beam can 

be modulated determine the display resolution. 

Modern VGA displays can accommodate different resolutions, and a VGA controller circuit dictates 

the resolution by producing timing signals to control the raster patterns. The controller must produce 

synchronizing pulses at 3.3V (or 5V) to set the frequency at which current flows through the 

deflection coils, and it must ensure that video data is applied to the electron guns at the correct time. 

Raster video displays define a number of "rows" that corresponds to the number of horizontal passes 

the cathode makes over the display area, and a number of "columns" that corresponds to an area on 

each row that is assigned to one "picture element" or pixel. Typical displays use from 240 to 1200 

rows and from 320 to 1600 columns. The overall size of a display and the number of rows and 

columns determines the size of each pixel. 
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Fig 13. VGA horizontal synchronization. 

Video data typically comes from a video refresh memory; with one or more bytes assigned to each 

pixel location (the Basys-3 uses 12-bits per pixel). The controller must index into video memory as 

the beams move across the display, and retrieve and apply video data to the display at precisely the 

time the electron beam is moving across a given pixel. 

 

A VGA controller circuit must generate the HS and VS timings signals and coordinate the delivery 

of video data based on the pixel clock. The pixel clock defines the time available to display one pixel 

of information. The VS signal defines the "refresh" frequency of the display, or the frequency at which 

all information on the display is redrawn. The minimum refresh frequency is a function of the 

display's phosphor and electron beam intensity, with practical refresh frequencies falling in the 50Hz 

to 120Hz range. The number of lines to be displayed at a given refresh frequency defines the 

horizontal "retrace" frequency. For a 640-pixel by 480-row display using a 25 MHz pixel clock and 

60 +/-1Hz refresh, the signal timings shown in Fig. 14 can be derived. Timings for sync pulse width 

and front and back porch intervals (porch intervals are the pre- and post-sync pulse times during 

which information cannot be displayed) are based on observations taken from actual VGA displays. 
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Fig 14. Signal timings for a 640-pixel by 480 row display using a 25 MHz pixel clock and 60 Hz 

vertical refresh. 

A VGA controller circuit, such as the one diagramed in Fig. 15, decodes the output of a horizontal-

sync counter driven by the pixel clock to generate HS signal timings. You can use this counter to 

locate any pixel location on a given row. Likewise, the output of a vertical-sync counter that 

increments with each HS pulse can be used to generate VS signal timings, and you can use this 

counter to locate any given row. These two continually running counters can be used to form an 

address into video RAM. No time relationship between the onset of the HS pulse and the onset of 

the VS pulse is specified, so you can arrange the counters to easily form video RAM addresses, or 

to minimize decoding logic for sync pulse generation. 

 

HS 

 
VS 

 
 
 

     Fig 15. VGA display controller block diagram. 

4.2.9. BASIC I/O 

The Basys-3 board includes sixteen slide switches, five push buttons, sixteen individual LEDs, and a 

four-digit seven- segment display, as shown in Fig.16. The pushbuttons and slide switches are 

connected to the FPGA via series resistors to prevent damage from inadvertent short circuits (a short 

circuit could occur if an FPGA pin assigned to a pushbutton or slide switch was inadvertently defined 
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as an output). The five pushbuttons, arranged in a plus-sign configuration, are "momentary" switches 

that normally generate a low output when they are at rest, and a high output only when they are 

pressed. Slide switches generate constant high or low inputs depending on their position. 

 

     Fig 16. General purpose I/O devices on the Basys-3. 

The sixteen individual high-efficiency LEDs are anode-connected to the FPGA via 330 ohm 

resistors, so they will turn on when a logic high voltage is applied to their respective I/O pin. 

Additional LEDs, which are not user- accessible, indicate power-on, FPGA programming status, 

and USB port status. 

 

4.2.9.1 Seven-Segment Display 

The Basys-3 board contains one four-digit common anode seven-segment LED display. Each of the 

four digits is composed of seven segments arranged in a "figure 8" pattern, with an LED embedded 

in each segment. Segment LEDs can be individually illuminated, so any one of 128 patterns can be 

displayed on a digit by illuminating certain LED segments and leaving the others dark, as shown in 

Fig. 17. Of these 128 possible patterns, the ten corresponding to the decimal digits are the most 

useful. 
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Fig 17. An un-illuminated seven-segment display and nine illumination patterns corresponding to 

decimal digits. 

 

The anodes of the seven LEDs forming each digit are tied together into one "common anode" circuit 

node, but the LED cathodes remain separate, as shown in Fig. 18. The common anode signals are 

available as four "digit enable" input signals to the 4-digit display. The cathodes of similar segments 

on all four displays are connected into seven circuit nodes labeled CA through CG (for example, the 

four "D" cathodes from the four digits are grouped together into a single circuit node called "CD"). 

These seven cathode signals are available as inputs to the 4-digit display. 

This signal connection scheme creates a multiplexed display, where the cathode signals are 

common to all digits but they can only illuminate the segments of the digit whose corresponding 

anode signal is asserted. 

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, 

since the Basys-3 uses transistors to drive enough current into the common anode point, the anode 

enables are inverted. Therefore, both the AN0..3 and the CA..G/DP signals are driven low when 

active. 

 

Fig 18. Common anode circuit node. 

A scanning display controller circuit can be used to show a four-digit number on this display. This 

circuit drives the anode signals and corresponding cathode patterns of each digit in a repeating, 

continuous succession at an update rate that is faster than the human eye can detect. Each digit is 
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illuminated just one-fourth of the time, but because the eye cannot perceive the darkening of a digit 

before it is illuminated again, the digit appears continuously illuminated. If the update, or "refresh", 

rate is slowed to around 45Hz, a flicker can be noticed in the display. 

For each of the four digits to appear bright and continuously illuminated, all four digits should be 

driven once every 1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 

62.5Hz refresh scheme, the entire display would be refreshed once every 16ms, and each digit would 

be illuminated for 1/4 of the refresh cycle, or 4ms. The controller must drive the cathodes 

low with the correct pattern when the corresponding anode signal is driven high. To illustrate the 

process, if AN0 is asserted while CB and CC are asserted, then a "1" will be displayed in digit position 

1. Then, if AN1 is asserted while CA, CB, and CC are asserted, a "7" will be displayed in digit 

position 2. If AN0, CB, and CC are driven for 4ms, and then AN1, CA, CB, and CC are driven for 

4ms in an endless succession, the display will show "71" in the first two digits. An example timing 

diagram for a four-digit controller is shown in Fig. 19. 

 

 

AN0 

AN1 

AN2 

AN3 

Cathodes 

Fig 19. Four digit scanning display controller timing diagram. 

4.2.10. PMOD PORTS 

The Pmod ports are arranged in a 2x6 right-angle, and are 100-mil female connectors that mate with 

standard 2x6 pin headers. Each 12-pin Pmod port provides two 3.3V VCC signals (pins 6 and 12), two 

Ground signals (pins 5 and 11), and eight logic signals, as shown in Fig. 20. The VCC and Ground pins 

can deliver up to 1A of current. Pmod data signals are not matched pairs, and they are routed using 

best-available tracks without impedance control or delay matching. Pin assignments for the Pmod I/O 

connected to the FPGA are shown in Table 5. 

Refresh period = 1ms to 16ms 

 

Digit 0 Digit 1 Digit 2 Digit 3 
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Fig 20. Pmod ports; front view as loaded on PCB. 

Table 5. Basys-3 Pmod pin assignment. 

Pmod JA Pmod JB Pmod JC Pmod XDAC 

JA1: J1 JB1: A14 JC1: K17 JXADC1: J3 

JA2: L2 JB2: A16 JC2: M18 JXADC2: L3 

JA3: J2 JB3: B15 JC3: N17 JXADC3: M2 

JA4: G2 JB4: B16 JC4: P18 JXADC4: N2 

JA7: H1 JB7: A15 JC7: L17 JXADC7: K3 

JA8: K2 JB8: A17 JC8: M19 JXADC8: M3 

JA9: H2 JB9: C15 JC9: P17 JXADC9: M1 

JA10: G3 JB10: C16 JC10: R18 JXADC10: N1 

Digilent produces a large collection of Pmod accessory boards that can attach to the Pmod expansion 

ports to add ready-made functions like A/Ds, D/As, motor drivers, sensors, and other functions. See 

www.digilentinc.com for more information. 

http://www.digilentinc.com/
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4.2.10.1 DUAL ANALOG/DIGITAL PMOD  

The on-board Pmod expansion port, labeled "JXADC", is wired to the auxiliary analog input pins of the 

FPGA. Depending on the configuration, this connector can be used to input differential analog signals 

to the analog-to- digital converter inside the Artix-7 (XADC). Any or all pairs in the connector can be 

configured either as analog input or digital input-output. 

The Dual Analog/Digital Pmod on the Basys-3 differs from the rest in the routing of its traces. The 

eight data signals are grouped into four pairs, with the pairs routed closely coupled for better analog 

noise immunity. Furthermore, each pair has a partially loaded anti-alias filter laid out on the PCB. 

The filter does not have capacitors C33-C36. In designs where such filters are desired, the capacitors 

can be manually loaded by the user. 

NOTE: The coupled routing and the anti-alias filters might limit the data speeds when used for 

digital signals. The XADC core within the Artix-7 is a dual channel 12-bit analog-to-digital 

converter capable of operating at 1 

MSPS. Either channel can be driven by any of the auxiliary analog input pairs connected to the 

JXADC header. The XADC core is controlled and accessed from a user design via the Dynamic 

Reconfiguration Port (DRP). The DRP also provides access to voltage monitors that are present on 

each of the FPGA's power rails, and a temperature sensor that is internal to the FPGA. For more 

information on using the XADC core, refer to the Xilinx document titled "7 Series FPGAs and Zynq-

7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter." 
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4.2.11. BUILT IN SELF TEST 

A demonstration configuration is loaded into the SPI Flash device on the Basys-3 board during 

manufacturing. The source code and prebuilt Bit stream for this design are available for download 

from the Digilent website. If the demo configuration is present in the SPI Flash device and the Basys3 

board is powered on in SPI mode, the demo project will allow basic hardware verification. Here is an 

overview of how this demo drives the different onboard components: 

 

• The user LEDs are illuminated when the corresponding user switch is placed in the on 

position. 

• The VGA port displays feedback from a USB Mouse. 

• Connecting a mouse to the USB-HID Mouse port will allow the pointer on the 

VGA display to be controlled. 

• On power-up, each digit of the seven-segment display will display a counter output 

from 0-9 that increments once a second. 

• Pressing BTNU, BTNL, BTNR, or BTND will cause a digit of the seven-segment display to 

go blank. 

• Pressing BTNC will reset the design. 

• On power-up, a welcome message is sent over the UART. Also, every time a button is 

pressed a message is sent. The UART can be connected to using a terminal program with 

9600 Baud, 8 data bits, 1 stop bit, and no parity. 

All Basys3 boards are 100% tested during the manufacturing process. If any device on the Basys3 

board fails test or is not responding properly, it is likely that damage occurred during transport or 

during use. Typical damage includes stressed solder joints and contaminants in switches and buttons 

resulting in intermittent failures. Stressed solder joints can be repaired by reheating and reflowing 

solder and contaminants can be cleaned with off-the-shelf electronics cleaning products. If a board 

fails test within the warranty period, it will be replaced at no cost. Contact Digilent for more details. 

 

4.3 DEVELOPMENT FLOW 

The simplified development flow of an FPGA-based system is shown below. The left portion of the 

flow is the refinement and programming process, in which a system is transformed from an abstract 

textual HDL description to a device cell- level configuration and then downloaded to the FPGA device. 

The right portion is the validation process, which checks whether the system meets the functional 

specification and performance goals. The major steps in the flow are:  
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Fig 21. Development flow 

a)Design Entry: Design the system and derive the HDL file(s). We may need to add a separate 

constraint file to specify certain implementation constraints. 

b)RTL Simulation: Develop the test bench in HDL and perform RTL(Register Transfer Level) 

simulation. The RTL term reflects the fact that the HDL code is done at the register transfer level. 

 c)Synthesis: The synthesis process is generally known as logic synthesis, in which the software 

transforms the HDL constructs to generic level components, such as simple logic gates and FFs. 

d)Implementation:  The implementation process consists of three smaller processes: translate map, and 

place and route. The translate process merges multiple design files to a single netlist. The map process, 

which is generally known as technology mapping, maps the generic gates in the netlist to FPGA logic 

cells and IOBs. The place and route process, which is generally known as placement and routing, derives 

the physical layout inside the FPGA chip. It places the cells in physical locations and determines routes 

to connect various signals. In the Xilinx flow, static timing analysis, which determines various timing 

parameters, such as maximal propagation delay and maximal clock frequency, is performed at the end 

of the implementation process. 

e)Generate and download the programming file: In this process, a configuration file is generated 

according to the final netlist. This file is downloaded to an FPGA device serially to configure the logic 

cells and switches. The physical circuit can be verified accordingly. 

The optional functional simulation can be performed after synthesis, and the optional timing simulation 

can be performed after implementation. Functional simulation uses a synthesized netlist to replace the 

RTL description and checks the correctness of the synthesis process. Timing simulation uses the final 
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netlist, along with detailed timing data, to perform simulation. Because of the complexity of the netlist, 

functional and timing simulation may require a significant amount of time. If we follow good design 

and coding practices, the HDL code will be synthesized and implemented correctly. We only need to 

use RTL simulation to check the correctness of the HDL code and use static timing analysis to examine 

the relevant timing information. Both functional and timing simulations can be omitted from the 

development flow. 

4.4 OVERVIEW OF VERILOG 

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model 

electronics systems. It is most commonly used in the design and verification of digital circuits at the 

regular – transfer level of abstraction. It is also used in the verification of analog circuits and mixed 

signal circuits HDL’s allows the design to be simulated earlier in the design cycle in order to correct 

errors or experiment with different architectures. Designs described in HDL are technology 

independent, easy to design and debug, and are usually more readable than schematics, particularly for 

large circuits. 

Verilog can be used to describe designs at four levels of abstraction:  

• Algorithmic level (much like a code if, case and loop statements). 

• Register transfer level (RTL uses registers connected by Boolean equations 

• Gate level (interconnected AND, NOR etc.). 

• Switch level (the switches are MOS transistors inside gates). 

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, and 

communicate with other modules through a set of declared input, output and bidirectional ports. 

Internally, a module can contain any combination of the following: net/variable declarations (wire, reg, 

integer etc), concurrent and sequential statement blocks and instances of other modules (sub – 

hierarchies).  

4.4.1 Features of Verilog HDL 

Verilog HDL offers many useful features for hardware design 

• Verilog (verify logic) HDL is a general-purpose hardware description language that is easy 

to learn and use. It is similar in syntax to the C programming language. Designers with C 

programming experience will find it easy to learn Verilog HDL. 
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• Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus, a 

designer can define a hardware model in terms of switches, gates, RTL or behavioral code. 

Also, a designer needs to learn only one language for stimulus and hierarchical design. 

• Most popular logic synthesis tools support Verilog HDL. This makes it the language of 

choice for designers. 

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis simulation. 

Thus, designing a chip in Verilog HDL allows the widest choice of vendors. 

• The programming language interface (PLI) is a powerful feature that allows the user to 

custom C code to interact with the internal data structures of Verilog. Designers can 

customize a Verilog HDL simulator to their need with the Programming language interface 

(PLI).  

4.4.2 Module Declaration 

A module is the principal design entity in Verilog. The first line of a module declaration specifies the 

name and port list (arguments). The next few lines specifies the I/O type (input, output or inout) and 

width of each port. The default port width is 1 bit. Then the port variables must be declared wire, reg. 

The default is wire. Typically, inputs are wire since their data is latched outside the module. Outputs are 

type reg if their signals were stored inside an always or initial block. 

Syntax 

Module model_name (port_list) 

Input[msb:lsb] input_port_list; 

Output[msb:lsb] output_port_list; 

inout[msb:lsb] inout_port_list; 

…………Statements……………. 

endmodule 

Example 

module add_sub (add, in1, in2, out); 

input add; 

input [7:0]in, in2; 
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wire in1, in2; 

output [7:0]out; 

reg out; 

…………..Statements………… 

endmodule 

Verilog has four levels of modelling: 

1) The Switch level modeling. 

2) Gate level modeling. 

3) The Data flow level. 

4)  The Behavioral level. 

1) Switch level modelling 

Switch level modelling forms the basic level of modelling digital circuits. The switches are available as 

a primitives in Verilog; they are central to design description at this level. Basic gates can be defined in 

terms of such switches. Switch-level modelling is a recently developed design and analysis 

methodology for MOS VLSI circuits. At the switch level, important features of MOS circuits can be 

directly modeled using a moderate number of discrete parameters, including switch states, resistance, 

capacitance, and bidirectional signals. Switch-level models, provide more accurate behavioural and 

structural information than gate-level logical models, while avoiding the high computational cost 

associated with analog electrical models. It provides a level of abstraction between the logic and analog-

transistor levels of abstraction, describing the interconnection of transmission gates which are 

abstractions of individual mos and cmos transistors. The design of MOS technology electronic circuits 

requires functional level simulations, as well as switch and circuit-level simulations. Functional 

simulations are necessary to understand the behaviour independently of the implementation details. 
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Fig 22. CMOS inverter 

2) Gate level modelling 

Modelling done at this level is usually called gate level modelling as it involves gates and has a one to 

one relation between a hardware schematic and the Verilog code. Verilog supports a few basic 

logic gates known as primitives as they can be instantiated like modules since they are already 

predefined. In general, gate-level modelling is used for implementing lowest level modules in a design 

like, full-adder, multiplexers, etc. Verilog HDL has gate primitives for all basic gates. Gate primitives 

are predefined in Verilog, which are ready to use. Multiple input gate primitives include and, nand, or, 

nor, xor and xnor. Designer should know the gate level diagram of the design.  

Example 

module or_gate (out, a, b, c, d);  

input a, b, c, d;  

wire x, y;  

output out;  

or or1(x, a, b);  

or or2(y, c, d);  
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or orfinal(out, x, y);  

endmodule 

3) Data flow level modelling 

Dataflow modelling provides the means of describing combinational circuits by their function rather 

than by their gate structure. Dataflow modelling uses a number of operators that act on operands to 

produce the desired results. Verilog HDL provides about 30 operator types. 

Dataflow modelling uses continuous assignments and the keyword assign. A continuous assignment is 

a statement that assigns a value to a net. The datatype net is used in Verilog HDL to represent a physical 

connection between circuit elements. The value assigned to the net is specified by an expression that 

uses operands and operators. As an example, assuming that the variables were declared, a2-to-1 

multiplexer with data inputs A and B, select input S, and output Y is described with continuous 

assignment. 

 assign Y= (A & S) | (B & S) 

Example 

The dataflow description of a 2-to-4-line decoder is shown in HDL below. The circuit is defined with 

four continuous assignment statements using Boolean expressions, one for each output. // Dataflow 

description of 2-to-4 line decoder with enable input (E) module decoder_df (A,B,E,D); 

 input A,B,E; 

 output [3,:0] D; 

 assign D[3] =~(~A & ~B & ~E); 

 assign D[2] =~(~A & B & ~E); 

 assign D[1] =~( A & ~B & ~E); 

 assign D[0] =~( A & B & ~E); 

endmodule 
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4) Behavioural level modelling 

This is the highest level of abstraction provided by Verilog HDL. A module can be implemented in 

terms of the desired design algorithm without concern for the hardware implementation details. It 

specifies the circuit in terms of its expected behaviour. It specifies the circuit in terms of its expected 

behaviour. It is the closest to a natural language description of the circuit functionality, but also the most 

difficult to synthesize. 

All that a designer need is the algorithm of the design, which is the basic information for any design. 

This level simulates the behavioural level of the circuits and development rate in this level is highest. 

Although the development rate in this abstraction level is high there are some drawbacks such as the 

delay modelling is not possible. In practice any circuit is first implemented in this level to understand 

the theoretical possibility of the circuit and then it is implemented in at a lower level to analyse the 

practical aspects. This level of Verilog has blocking and non-blocking assignment. Blocking assignment 

is sequential nature and using the combination of both assignments, complex sequential can be modelled 

with ease. 

The abstraction in this modelling is as simple as writing the logic in C language. This is a very powerful 

abstraction technique. All that a designer needs are the algorithm of the design, which is the basic 

information for any design. This level is very important because with the increasing complexity of 

digital design, it has become vitally important to make wise design decisions early in a project. 

Designers need to be able to evaluate the trade-offs of various architectures and algorithms before they 

decide on the optimum architecture and algorithm to implement in hardware. Only after the high-level 

architecture and algorithm are finalized, designers start focusing on building the digital circuit to 

implement the algorithm. Most of the behavioural modelling is done using two important constructs: 

initial and always. All the other behavioural statements appear only inside these two structured 

procedure constructs. 

Initial construct 

The statements which come under the initial construct constitute the initial block. The initial block is 

executed only once in the simulation, at time 0. If there are more than one initial blocks, than all the 

initial blocks are executed concurrently. The initial construct is used as follows: 

Initial 

Begin 
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Reset = 1'b0; 

clk = 1'b1; 

end 

In the first initial block there is more than one statements hence they are written between begin and end. 

If there is only one statement then there is no need to put begin and end. 

Always construct 

The statements which come under the always construct constitute the always block. The always block 

starts at time 0, and keeps on executing all the simulation time. It works like an infinite loop. It is 

generally used to model a functionality that is continuously repeated. 

always 

#5 clk = ~clk; 

initial 

clk = 1'b0; 

The above code generates a clock signal clk, with a time period of 10units. The initial blocks initiates 

the clk value to 0 at time 0. Then after  every 5 units of time it is toggled, hence we get a time period of 

10units. This is the general way to generate a clock signal for use in testbenches. 

4.5 Overview of EDA (Electronic Design Automation) software 

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL designs, 

superseding Xilinx ISE with additional features for system on a chip development and high level 

synthesis. 

Setting up a vivado project involves the following steps-  

Creating a New Project 

After launching Vivado, from the startup page click the “Create New Project” icon. Alternatively, you 

can select File  ➔ New project 

 

https://en.wikipedia.org/wiki/System_on_a_chip
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The New Project wizard will launch, click the “Next>” button to proceed. 

 

 

 

Enter a project name and select a project location. Make certain there are NO SPACES in either! It’s 

not a bad idea to only use letters, numbers, and underscores as well. If necessary simply create a new 

directory for your Xilinx Vivado projects in your root drive (e.g. C:/Vivado). You will likely always 
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want to select the “create project sub-directory” check-box as well. This keeps the things neatly 

organized with a directory for each project and helps avoid problems. Click the “Next>" button to 

proceed. 

 

 

 

Select the “RTL Project” radial and select “Do not specify sources at this time” check -box. If you don’t 

select the check-box the wizard will take you through some additional steps to optionally add pre 

existing items such as VERILOG or Verilog source files, Vivado IP blocks, and .XDC constraint file 

for device pin and timing configuration. For this first project you will add necessary items later. Click 

the “Next>” button to proceed 

 

 

 

Once you select the RTL project, Click on next button. 
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Click the “Finish” button and Vivado will proceed to create your project as specified. 
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STEPS FOR DESIGN ENTRY/ IMPLEMENTATION: 

Working through the basic project flow 

 The Vivado project window contains a lot of information, and the information displayed can 

change depending on what part of the design currently have open as you work through the steps of your 

project. Keep this in mind as you work through this guide, because if you don’t see a specific sub 

window or sub window tab it’s possible you are’nt in the correct part of the design. 

          The “Flow Navigator” on the left side of the screen has all the major project phases organized 

from top to bottom in their natural chronological order. You begin in the “project manager” portion of 

the flow and the header at the top of the screen next to the flow navigator reflects this. This header and 

the corresponded highlighted section in the flow navigator will tell you which phase of the design you 

have opened. 

Project Manager 

Now click on “Add sources” under the project manager phase of the flow navigator. 

 

 

Select the “Add or create design sources” radial and then click the “Next” button. 
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Click the “Create file”button or click the Green “+”symbol in the upper left corner and select the “create 

file” option. 
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Make sure the options shown are selected in the “create source file”pop up, and for the sake of following 

enter “blinky” for the file name. Click the ok button when finished. 

Click the “finish button” and Vivado will then bring up the define module name. 

 

 

 

 

You can use the “define module” window to automatically write some of the Verilog code. Additional 

“I/O definitions” can be added by either clicking the green “+”symbol in the upper left or by simply 

clicking on the next empty line. 

Note that if you would rather write your own code from scratch you can just simply click the “cancel” 

button and Vivado will create a completely blank Verilog source file inside your project. If you click 

the “OK” button without defining any “I/O definitions” Vivado will still write the basic Verilog code 

structure but the port definition will be empty and commented  and you can write down the required 

remaining program. 

 

STEPS FOR CONSTRAINTS FILE CREATION 

Click on “Add sources” under the project manager phase of the Flow navigator. 

Select the “Add or create constraints” radialand then click the “Next>”button 
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Then appears a popup asking for file name of the constraint file. Assign name to the constraint file and 

make sure that there are no spaces! and then click “OK”. 

 

 

Write the bit file according to the requirement. The required memory locations are mapped to the 

program variables. 
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The above written bit file is for half adder. The input variables a and b are mapped to input switch 

locations and the output variables s,c are mapped to output LED locations. In this way a bit file can be 

written according to our program requirements. We can also access locations other than switches and 

LED’s like LCD display, clock, buttons and Pmod Headers. The Pmod Headers are used for external 

interfacing.  

After writing bit file click on “Run Implementation”  

 

After successfully completing the implementation a pop up appears as follows 
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Click on “Generate Bit stream” and then “OK”. 

 

This is an indication for completion of the generation of the Bit stream which appears on top right 

corner. 

Now we have to connect to hardware device to target the device 

 

Click on “Open Hardware Manager” and then “OK” 
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Click on “Open Target” to target a device. The Open New Hardware Target wizard will launch, click 

the “Next>” button to proceed. 

 

 

Select the “local server(target is on local machine)” from the drop down if it is’nt already, and then click 

the “Next>”button to proceed. Vivado will work for a moment to find any valid target devices connected 

to your local machine. 
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Select your specific Hardware device. Click the “Finish” button and Vivado will attempt to connect to 

your specified hardware. Now click “Program device” under the program and debug phase of the Flow 

Navigator and then your specific device from the menu that appears. 

After sometime the device will be programmed and the required outputs (LED’s) can be obtained by 

varying the inputs (switches) 



56 
 

CHAPTER 5 

METHODOLOGY 

Method 1: Grouping 8 bits using 5:3 compressor and a full adder 

 

Fig5(a) Grouping 8 bits using 5:3 compressor and full adder 

 

Here in this method, we use 4:3, 5:3, 6:3, 7:3 compressors. For Example, 5:3 compressor is used to add 

5 bits which is generally done by using a full adder and a half adder. Similar case with other compressors 

also. Wallace tree method is used to find the result of multiplication of binary numbers. In this method, 

binary bits are added and the result is transferred to next stage as follows. 

 

Fig5(b) Stages involving in binary bits addition of 8-bit multiplication using 5:3 compressor 

 The output of a full adder will be sum and carry. The sum is transferred to same level of next stage and 

carry is transferred to next level of next stage. Similarly, if we take 5:3 compressor, it will generate three 

outputs namely sum, carry, auxiliary carry. Now sum will be transferred to same level of next stage, 
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carry is transferred to next level of next stage and auxiliary carry is transferred to second next level of 

the next stage. If after grouping any bit is left ungrouped, then it is transferred directly to next stage. For 

example, if we group 8 bits using 7:3 compressor, one bit is left ungrouped. The first three output bits 

of 7:3 compressor follow same procedure as discussed previously and the left bit is transferred directly 

to next stage. Similarly, we group bits of next stage using same procedure and the outputs are transferred 

to succeeding next stage until we get the final result. 

Method 2. Grouping 8 bits using 8:4 compressor 

 

Fig5(c) Grouping 8 bits using 8:4 compressor 

 

Fig5(d) Stages involving in binary bits addition of 8-bit multiplication using 8:4 compressor 

The same methodology we used in case of method 1 is implemented here. But the only difference is 8 

bits are grouped directly using 8:4 compressor. 
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CHAPTER 6 

SIMULATION RESULTS AND CONCLUSIONS 

6.1. Software: Xilinx Vivado 

• We have written code for design of efficient multiplier using verilog language. 

• Verilog is a Hardware Description Language which is used to design and describe digital 

circuits. 

• The Verilog HDL is an IEEE standard - number 1364.  Verilog is intended to be used for 

verification through simulation, for timing analysis, for test analysis and for logic synthesis. 

• Verilog is an easier language as it’s syntax is based on C language. Verilog supports a design at 

many levels of abstraction. The major three are? Behavioral level, Register-transfer level and 

Gate level. We have simulated the code in vivado software and analyzed the results. 

6.2. Simulation Results of Proposed Work 

A) Method 1: 

a) RTL Diagram     

Register Transfer Level (RTL) is an abstraction for defining the digital portions of a design. The figure 

below represents the RTL diagram of 8 bit multiplier designed using method 1. 

 

Fig 23. RTL diagram 
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b) Synthesized Schematic Diagram 

The Synthesized Schematic diagram for the above RTL diagram is as shown. It represents how the 

actual components are connected on the artix-7 Fpga board. 

 

Fig 24. Synthesized schematic diagram 

c) Area Utilization Report 

 

Fig 25. Design synthesize status 

 

Fig 26. LUT table 
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Fig 27. Logic and memory table 

d) Power Report 

 

Fig 28. Power report 

 

 

B) Method 2 

a) RTL Diagram     

Register Transfer Level (RTL) is an abstraction for defining the digital portions of a design. The figure 

below represents the RTL diagram of 8 bit multiplier designed using method 2. 
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Fig 29. RTL diagram 

b) Synthesized Schematic Diagram: 

The Synthesized Schematic diagram for the above RTL diagram is as shown. It represents how the 

actual components are connected on the artix-7 Fpga board. 

 

Fig 30. Synthesized schematic diagram 
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c) Area Utilization Report 

 

Fig 31. Design synthesize status 

 

Fig 32. LUT table 

d) Power Report 

The following figure represents the Power analysis from Implemented netlist. 

 

Fig 33. Power report 
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6.3 Theoretical calculation: from fig 21 we have taken three different binary values for multiplication  

A = 00000011; B = 00000101 

A*B = 00001111 

 

6.4 Simulation Outputs 

 

Fig 34. Simulation output results 

  

6.4 Hardware Implementation 

In this work, all proposed models are implemented on Basys3 Artix7 FPGA with the help of Xilinx 

Vivado. For implementation first we have to map original input and output ports with board I/Os by 

generating constraint file. Next, the program can be dumped to FPGA kit to verify the simulation results 

practically. 
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65 
 

INTERFERENCE 7 SEGMENT DISPLAY 

 

 

 

Here multiplication between 1 and 23 is done and the output is 23 which is represented as 00010111 in 

binary format which can be observed using LEDs as shown in the figure. Additionally the resultant 

output is displayed on seven segment display which represents the hexadecimal equivalent of 23 

which is nothing but 17. 
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CONCLUSION 

In digital  signal processing , multiplication  is  a key operation  which  determines  the  performance                             

of  the  multiplier. Speed and area requirement of multiplier plays major part in the performance of  

multiplier. In this paper, We designed binary 8 bit  multiplier using higher order compressors and     

adders  using  two  methods  and compared  both  methods  such  that  area  occupied  in  terms  of  

LUTs  is reduced. 
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